
Chapter 2. Primitive

Types and Variables

In This Chapter

In this chapter we will get familiar with primitive types and variables in

C# – what they are and how to work with them. First we will consider the

data types – integer types, real types with floating-point, Boolean, character,

string and object type. We will continue with the variables, with their

characteristics, how to declare them, how they are assigned a value and what

a variable initialization is. We will get familiar with the two major sets of data

types in C# – value types and reference types. Finally we will examine

different types of literals and their usage.

What Is a Variable?

A typical program uses various values that change during its execution.

For example, we create a program that performs some calculations on the

values entered by the user. The values entered by one user will obviously be

different from those entered in by another user. This means that when

creating the program, the programmer does not know what values will be

introduced as input, and that makes it necessary to process all possible values

a user may enter.

When a user enters a new value that will be used in the process of calculation,

we can preserve it (temporarily) in the random access memory of our

computer. The values in this part of memory change (vary) throughout

execution and this has led to their name – variables.

Data Types

Data types are sets (ranges) of values that have similar characteristics. For

instance byte type specifies the set of integers in the range of [л … 2рр].

Characteristics

Data types are characterized by:

- Name – for example, int;

- Size (how much memory they use) – for example, 4 bytes;

- Default value – for example 0.

112 Fundamentals of Computer Programming with C#

Types

Basic data types in C# are distributed into the following types:

- Integer types – sbyte, byte, short, ushort, int, uint, long, ulong;

- Real floating-point types – float, double;

- Real type with decimal precision – decimal;

- Boolean type – bool;

- Character type – char;

- String – string;

- Object type – object.

These data types are called primitive (built-in types), because they are

embedded in C# language at the lowest level. The table below represents the

above mentioned data types, their range and their default values:

Data

Types

Default

Value
Minimum Value Maximum Value

sbyte 0 -128 127

byte 0 0 255

short 0 -32768 32767

ushort 0 0 65535

int 0 -2147483648 2147483647

uint 0u 0 4294967295

long 0L -9223372036854775808 9223372036854775807

ulong 0u 0 18446744073709551615

float 0.0f ± . × 0-45 ± . × 038

double 0.0d ± .0× 0-324 ± . × 0308

decimal 0.0m ± .0× 0-28 ± .9× 028

bool false Two possible values: true and false

char '\u0000' '\u0000' '\uffff'

object null - -

string null - -

Chapter 2. Primitive Types and Variables 113

Correspondence between C# and .NET Types

Primitive data types in C# have a direct correspondence with the types of the

common type system (CTS) in .NET Framework. For instance, int type in C#

corresponds to System.Int32 type in CTS and to Integer type in VB.NET

language, while long type in C# corresponds to System.Int64 type in CTS

and to Long type in VB.NET language. Due to the common types system

(CTS) in .NET Framework there is compatibility between different prog-

ramming languages (like for instance, C#, Managed C++, VB.NET and F#).

For the same reason int, Int32 and System.Int32 types in C# are actually

different aliases for one and the same data type – signed 32-bit integer.

Integer Types

Integer types represent integer numbers and are sbyte, byte, short,

ushort, int, uint, long and ulong. Let’s examine them one by one.

The sbyte type is an 8-bit signed integer. This means that the number of

possible values for it is 28, i.e. 256 values altogether, and they can be both,

positive and negative. The minimum value that can be stored in sbyte is

SByte.MinValue = -128 (-27), and the maximum value is SByte.MaxValue =

127 (27-1). The default value is the number 0.

The byte type is an 8-bit unsigned integer type. It also has 256 different

integer values (28) that can only be nonnegative. Its default value is the

number 0. The minimal taken value is Byte.MinValue = 0, and the maximum

is Byte.MaxValue = 255 (28-1).

The short type is a 16-bit signed integer. Its minimal value is

Int16.MinValue = -32768 (-215), and the maximum is Int16.MaxValue =

32767 (215-1). The default value for short type is the number 0.

The ushort type is 16-bit unsigned integer. The minimum value that it can

store is UInt16.MinValue = 0, and the minimum value is –

UInt16.MaxValue = 65535 (216-1). Its default value is the number 0.

The next integer type that we will consider is int. It is a 32-bit signed

integer. As we can notice, the growth of bits increases the possible values

that a type can store. The default value for int is 0. Its minimal value is

Int32.MinValue = -2,147,483,648 (-231), and its maximum value is

Int32.MaxValue = 2,147,483,647 (231-1).

The int type is the most often used type in programming. Usually

programmers use int when they work with integers because this type is

natural for the 32-bit microprocessor and is sufficiently "big" for most of the

calculations performed in everyday life.

The uint type is 32-bit unsigned integer type. Its default value is the

number 0u or 0U (the two are equivalent). The 'u' letter indicates that the

number is of type uint (otherwise it is understood as int). The minimum

114 Fundamentals of Computer Programming with C#

value that it can take is UInt32.MinValue = 0, and the maximum value is

UInt32.MaxValue = 4,294,967,295 (232-1).

The long type is a 64-bit signed type with a default value of 0l or 0L (the

two are equivalent but it is preferable to use 'L' because the letter 'l' is easily

mistaken for the digit one '1'). The 'L' letter indicates that the number is of

type long (otherwise it is understood int). The minimal value that can be

stored in the long type is Int64.MinValue = -9,223,372,036,854,775,808

(-263) and its maximum value is Int64.MaxValue = 9,223,372,036,854,

775,807 (263-1).

The biggest integer type is the ulong type. It is a 64-bit unsigned type,

which has as a default value – the number 0u, or 0U (the two are equivalent).

The suffix 'u' indicates that the number is of type ulong (otherwise it is

understood as long). The minimum value that can be recorded in the ulong

type is UInt64.MinValue = 0 and the maximum is UInt64.MaxValue =

18,446,744,073,709,551,615 (264-1).

Integer Types – Example

Consider an example in which we declare several variables of the integer

types we know, we initialize them and print their values to the console:

// Declare some variables

byte centuries = 20;
ushort years = 2000;
uint days = 730480;

ulong hours = 17531520;
// Print the result on the console
Console.WriteLine(centuries + " centuries are " + years +

 " years, or " + days + " days, or " + hours + " hours.");

// Console output:

// 20 centuries are 2000 years, or 730480 days, or 17531520

// hours.

ulong maxIntValue = UInt64.MaxValue;
Console.WriteLine(maxIntValue); // 18446744073709551615

You would be able to see the declaration and initialization of a variable in

detail in sections "Declaring Variables" and "Initialization of Variables" below,

and it would become clear from the examples.

In the code snippet above, we demonstrate the use of integer types. For small

numbers we use byte type, and for very large – ulong. We use unsigned

types because all used values are positive numbers.

Chapter 2. Primitive Types and Variables 115

Real Floating-Point Types

Real types in C# are the real numbers we know from mathematics. They are

represented by a floating-point according to the standard IEEE 754 and are

float and double. Let’s consider in details these two data types and
understand what their similarities and differences are.

Real Type Float

The first type we will consider is the 32-bit real floating-point type float. It

is also known as a single precision real number. Its default value is 0.0f

or 0.0F (both are equivalent). The character 'f' when put at the end explicitly

indicates that the number is of type float (because by default all real

numbers are considered double). More about this special suffix we can read

bellow in the "Real Literals" section. The considered type has accuracy up to

seven decimal places (the others are lost). For instance, if the number

0.123456789 is stored as type float it will be rounded to 0.1234568. The

range of values, which can be included in a float type (rounded with accuracy

of 7 significant decimal digits), range from ± . × 10-45 to ± . × 1038.

Special Values of the Real Types

The real data types have also several special values that are not real numbers

but are mathematical abstractions:

- Negative infinity -∞ (Single.NegativeInfinity). It is obtained

when for instance we are dividing -1.0f by 0.0f.

- Positive infinity +∞ (Single.PositiveInfinity). It is obtained

when for instance we are dividing 1.0f by 0.0f.

- Uncertainty (Single.NaN) – means that an invalid operation is

performed on real numbers. It is obtained when for example we divide

0.0f by 0.0f, as well as when calculating square root of a negative

number.

Real Type Double

The second real floating-point type in the C# language is the double type.

It is also called double precision real number and is a 64-bit type with a

default value of 0.0d and 0.0D (the suffix 'd' is not mandatory because by

default all real numbers in C# are of type double). This type has precision of

15 to 16 decimal digits. The range of values, which can be recorded in double

(rounded with precision of 15-16 significant decimal digits), is from

± .0 × 10-324 to ± . × 10308.

The smallest real value of type double is the constant Double.MinValue =

-1.79769e+308 and the largest is Double.MaxValue = 1.79769e+308. The

closest to 0 positive number of type double is Double.Epsilon = 4.94066e-
324. As with the type float the variables of type double can take the special

116 Fundamentals of Computer Programming with C#

values: Double.PositiveInfinity (+∞), Double.NegativeInfinity (-∞)

and Double.NaN (invalid number).

Real Floating-Point Types – Example

Here is an example in which we declare variables of real number types, assign

values to them and print them:

float floatPI = 3.14f;

Console.WriteLine(floatPI); // 3.14
double doublePI = 3.14;
Console.WriteLine(doublePI); // 3.14

double nan = Double.NaN;
Console.WriteLine(nan); // NaN
double infinity = Double.PositiveInfinity;

Console.WriteLine(infinity); // Infinity

Precision of the Real Types

In mathematics the real numbers in a given range are countless (as opposed

to the integers in that range) as between any two real numbers a and b there

are countless other real numbers c where a < c < b. This requires real

numbers to be stored in computer memory with a limited accuracy.

Since mathematics and physics mostly work with extremely large numbers

(positive and negative) and with extremely small numbers (very close to

zero), real types in computing and electronic devices must be stored and

processed appropriately. For example, according to the physics the mass of

electron is approximately 9.109389*10-31 kilograms and in 1 mole of

substance there are approximately 6.02*1023 atoms. Both these values can

be stored easily in float and double types.

Due to its flexibility, the modern floating-point representation of real

numbers allows us to work with a maximum number of significant digits for

very large numbers (for example, positive and negative numbers with

hundreds of digits) and with numbers very close to zero (for example, positive

and negative numbers with hundreds of zeros after the decimal point before

the first significant digit).

Accuracy of Real Types – Example

The real types in C# we went over – float and double – differ not only by

the range of possible values they can take, but also by their precision (the

number of decimal digits, which they can preserve). The first type has a

precision of 7 digits, the second – 15-16 digits.

Consider an example in which we declare several variables of the known real

types, initialize them and print their values on the console. The purpose of the

example is to illustrate the difference in their accuracy:

Chapter 2. Primitive Types and Variables 117

// Declare some variables
float floatPI = 3.141592653589793238f;
double doublePI = 3.141592653589793238;

// Print the results on the console
Console.WriteLine("Float PI is: " + floatPI);

Console.WriteLine("Double PI is: " + doublePI);

// Console output:

// Float PI is: 3.141593
// Double PI is: 3.14159265358979

We see that the number π which we declared as float, is rounded to the 7-th

digit, and the one we declared double – to 15-th digit. We can conclude that

the real type double retains much greater precision than float, thus if we

need a greater precision after the decimal point, we will use it.

About the Presentation of the Real Types

Real floating-point numbers in C# consist of three components (according to

the standard IEEE 754): sign (1 or -1), mantissa and order (exponent),

and their values are calculated by a complex formula. More detailed

information about the representation of the real numbers is provided in the

chapter "Numeral Systems" where we will take an in-depth look at the

representation of numbers and other data types in computing.

Errors in Calculations with Real Types

In calculations with real floating-point data types it is possible to observe

strange behavior, because during the representation of a given real number

it often happens to lose accuracy. The reason for this is the inability of some

real numbers to be represented exactly as a sum of negative powers of the

number 2. Examples of numbers that do not have an accurate representation

in float and double types are for instance 0.1, 1/3, 2/7 and other. Here is a

sample C# code, which demonstrates errors in calculations with floating-point

numbers in C#:

float f = 0.1f;
Console.WriteLine(f); // 0.1 (correct due to rounding)
double d = 0.1f;

Console.WriteLine(d); // 0.100000001490116 (incorrect)

float ff = 1.0f / 3;

Console.WriteLine(ff); // 0.3333333 (correct due to rounding)

double dd = ff;
Console.WriteLine(dd); // 0.333333343267441 (incorrect)

118 Fundamentals of Computer Programming with C#

The reason for the unexpected result in the first example is the fact that the

number 0.1 (i.e. 1/10) has no accurate representation in the real floating-

point number format IEEE 754 and its approximate value is recorded. When

printed directly the result looks correct because of the rounding. The rounding

is done during the conversion of the number to string in order to be printed

on the console. When switching from float to double the approximate

representation of the number in the IEEE 754 format is more noticeable.

Therefore, the rounding does no longer hide the incorrect representation and

we can observe the errors in it after the eighth digit.

In the second case the number 1/3 has no accurate representation and is

rounded to a number very close to 0.3333333. The value of this number is

clearly visible when it is written in double type, which preserves more

significant digits.

Both examples show that floating-point number arithmetic can produce

mistakes, and is therefore not appropriate for precise financial calculations.

Fortunately, C# supports decimal precision arithmetic where numbers like 0.1

are presented in the memory without rounding.

Not all real numbers have accurate representation in float

and double types. For example, the number 0.1 is represent-

ted rounded in float type as 0.099999994.

Real Types with Decimal Precision

C# supports the so-called decimal floating-point arithmetic, where

numbers are represented via the decimal numeral system rather than the

binary one. Thus, the decimal floating point-arithmetic type in C# does not

lose accuracy when storing and processing floating-point numbers.

The type of data for real numbers with decimal precision in C# is the 128-

bit type decimal. It has a precision from 28 to 29 decimal places. Its minimal

value is - .9× 028 and its maximum value is + .9× 028. The default value is

0.0m or 0.0M. The 'm' character at the end indicates explicitly that the number

is of type decimal (because by default all real numbers are of type double).

The closest to 0 numbers, which can be recorded in decimal, are ± .0 × 10-28.
It is obvious that decimal can store neither very big positive or negative

numbers (for example, with hundreds of digits), nor values very close to 0.

However, this type is almost perfect for financial calculations because it

represents the numbers as a sum of powers of 10 and losses from rounding

are much smaller than when using binary representation. The real numbers of

type decimal are extremely convenient for financial calculations –

calculation of revenues, duties, taxes, interests, payments, etc.

Here is an example in which we declare a variable of type decimal and assign

its value:

Chapter 2. Primitive Types and Variables 119

decimal decimalPI = 3.14159265358979323846m;
Console.WriteLine(decimalPI); // 3.14159265358979323846

The number decimalPI, which we declared of type decimal, is not rounded

even with a single position because we use it with precision of 21 digits,

which fits in the type decimal without being rounded.

Because of the high precision and the absence of anomalies during

calculations (which exist for float and double), the decimal type is

extremely suitable for financial calculations where accuracy is critical.

Despite its smaller range, the decimal type retains precision

for all decimal numbers it can store! This makes it much

more suitable for precise calculations, and very appropriate

for financial ones.

The main difference between real floating-point numbers and real

numbers with decimal precision is the accuracy of calculations and the

extent to which they round up the stored values. The double type allows us

to work with very large values and values very close to zero but at the

expense of accuracy and some unpleasant rounding errors. The decimal type

has smaller range but ensures greater accuracy in computation, as well as

absence of anomalies with the decimal numbers.

If you perform calculations with money use the decimal type

instead of float or double. Otherwise, you may encounter

unpleasant anomalies while calculating and errors as a

result!

As all calculations with data of type decimal are done completely by software,

rather than directly at a low microprocessor level, the calculations of this type

are from several tens to hundreds of times slower than the same

calculations with double, so use this type only when it is really necessary.

Boolean Type

Boolean type is declared with the keyword bool. It has two possible values:

true and false. Its default value is false. It is used most often to store the

calculation result of logical expressions.

Boolean Type – Example

Consider an example in which we declare several variables from the already

known types, initialize them, compare them and print the result on the

console:

// Declare some variables

120 Fundamentals of Computer Programming with C#

int a = 1;
int b = 2;
// Which one is greater?

bool greaterAB = (a > b);
// Is 'a' equal to 1?
bool equalA1 = (a == 1);

// Print the results on the console
if (greaterAB)
{

 Console.WriteLine("A > B");
}

else

{
 Console.WriteLine("A <= B");
}

Console.WriteLine("greaterAB = " + greaterAB);
Console.WriteLine("equalA1 = " + equalA1);

// Console output:
// A <= B

// greaterAB = False
// equalA1 = True

In the example above, we declare two variables of type int, compare them

and assign the result to the bool variable greaterAB. Similarly, we do the

same for the variable equalA1. If the variable greaterAB is true, then A > B
is printed on the console, otherwise A <= B is printed.

Character Type

Character type is a single character (16-bit number of a Unicode table

character). It is declared in C# with the keyword char. The Unicode table is

a technological standard that represents any character (letter, punctuation,

etc.) from all human languages as writing systems (all languages and

alphabets) with an integer or a sequence of integers. More about the Unicode

table can be found in the chapter "Strings and Text Processing". The smallest

possible value of a char variable is 0, and the largest one is 65535. The

values of type char are letters or other characters, and are enclosed in

apostrophes.

Character Type – Example

Consider an example in which we declare one variable of type char, initialize

it with value 'a', then 'b', then 'A' and print the Unicode values of these

letters to the console:

Chapter 2. Primitive Types and Variables 121

// Declare a variable
char ch = 'a';
// Print the results on the console

Console.WriteLine(
 "The code of '" + ch + "' is: " + (int)ch);
ch = 'b';

Console.WriteLine(
 "The code of '" + ch + "' is: " + (int)ch);
ch = 'A';

Console.WriteLine(
 "The code of '" + ch + "' is: " + (int)ch);

// Console output:
// The code of 'a' is: 97
// The code of 'b' is: 98

// The code of 'A' is: 65

Strings

Strings are sequences of characters. In C# they are declared by the

keyword string. Their default value is null. Strings are enclosed in quotation

marks. Various text-processing operations can be performed using strings:

concatenation (joining one string with another), splitting by a given separator,

searching, replacement of characters and others. More information about text

processing can be found in the chapter "Strings and Text Processing", where

you will find detailed explanation on what a string is, what its applications are

and how we can use it.

Strings – Example

Consider an example in which we declare several variables of type string,

initialize them and print their values on the console:

// Declare some variables

string firstName = "John";
string lastName = "Smith";
string fullName = firstName + " " + lastName;

// Print the results on the console
Console.WriteLine("Hello, " + firstName + "!");
Console.WriteLine("Your full name is " + fullName + ".");

// Console output:

// Hello, John!

// Your full name is John Smith.

122 Fundamentals of Computer Programming with C#

Object Type

Object type is a special type, which is the parent of all other types in the .NET

Framework. Declared with the keyword object, it can take values from any

other type. It is a reference type, i.e. an index (address) of a memory area

which stores the actual value.

Using Objects – Example

Consider an example in which we declare several variables of type object,

initialize them and print their values on the console:

// Declare some variables

object container1 = 5;
object container2 = "Five";

// Print the results on the console
Console.WriteLine("The value of container1 is: " + container1);
Console.WriteLine("The value of container2 is: " + container2);

// Console output:
// The value of container1 is: 5

// The value of container2 is: Five.

As you can see from the example, we can store the value of any other type in

an object type variable. This makes the object type a universal data

container.

Nullable Types

Nullable types are specific wrappers around the value types (as int,

double and bool) that allow storing data with a null value. This provides

opportunity for types that generally do not allow lack of value (i.e. value

null) to be used as reference types and to accept both normal values and the

special one null. Thus nullable types hold an optional value.

Wrapping a given type as nullable can be done in two ways:

Nullable<int> i1 = null;
int? i2 = i1;

Both declarations are equivalent. The easiest way to perform this operation is

to add a question mark (?) after the type, for example int?, the more difficult

is to use the Nullable<…> syntax.

Nullable types are reference types i.e. they are reference to an object in the

dynamic memory, which contains their actual value. They may or may not

have a value and can be used as normal primitive data types, but with some

specifics, which are illustrated in the following example:

Chapter 2. Primitive Types and Variables 123

int i = 5;
int? ni = i;
Console.WriteLine(ni); // 5

// i = ni; // this will fail to compile
Console.WriteLine(ni.HasValue); // True

i = ni.Value;
Console.WriteLine(i); // 5

ni = null;
Console.WriteLine(ni.HasValue); // False

//i = ni.Value; // System.InvalidOperationException

i = ni.GetValueOrDefault();
Console.WriteLine(i); // 0

The example above shows how a nullable variable (int?) can have a value

directly added even if the value is non-nullable (int). The opposite is not

directly possible. For this purpose, the nullable types’ property Value can be

used. It returns the value stored in the nullable type variable, or produces an

error (InvalidOperationException) during program execution if the value is

missing (null). In order to check whether a variable of nullable type has a

value assigned, we can use the Boolean property HasValue. Another useful

method is GetValueOrDefault(). If the nullable type variable has a value,

this method will return its value, else it will return the default value for the

nullable type (most commonly 0).

Nullable types are used for storing information, which is not mandatory. For

example, if we want to store data for a student such as the first name and

last name as mandatory and age as not required, we can use type int? for

the age variable:

string firstName = "John";

string lastName = "Smith";

int? age = null;

Variables

After reviewing the main data types in C# let’s see how we can use them. In
order to work with data we should use variables. We have already seen their

usage in the examples, but now let’s look at them in more detail.

A variable is a container of information, which can change its value. It

provides means for:

- storing information;

- retrieving the stored information;

124 Fundamentals of Computer Programming with C#

- modifying the stored information.

In C# programming, you will use variables to store and process information

all the time.

Characteristics of Variables

Variables are characterized by:

- name (identifier), for example age;

- type (of the information preserved in them), for example int;

- value (stored information), for example 25.

A variable is a named area of memory, which stores a value from a

particular data type, and that area of memory is accessible in the program by

its name. Variables can be stored directly in the operational memory of the

program (in the stack) or in the dynamic memory in which larger objects are

stored (such as character strings and arrays).

Primitive data types (numbers, char, bool) are called value types because

they store their value directly in the program stack.

Reference data types (such as strings, objects and arrays) are an address,

pointing to the dynamic memory where their value is stored. They can be

dynamically allocated and released i.e. their size is not fixed in advance

contrary to the case of value types.

More information about the value and reference data types is provided in the

section "Value and Reference Types".

Naming Variables – Rules

When we want the compiler to allocate a memory area for some information

which is used in our program we must provide a name for it. It works like an

identifier and allows referring to the relevant memory area.

The name of the variable can be any of our choice but must follow certain

rules defined in the C# language specification:

- Variable names can contain the letters a-z, A-Z, the digits 0-9 as well as

the character '_'.

- Variable names cannot start with a digit.

- Variable names cannot coincide with a keyword of the C# language.

For example, base, char, default, int, object, this, null and many

others cannot be used as variable names.

A list of the C# keywords can be found in the section "Keywords" in chapter

"Introduction to Programming". If we want to name a variable like a keyword,

we can add a prefix to the name – "@". For example, @char and @null are

valid variable names while char and null are invalid.

Chapter 2. Primitive Types and Variables 125

Naming Variables – Examples

Proper names:

- name

- first_Name

- _name1

Improper names (will lead to compilation error):

- 1 (digit)

- if (keyword)

- 1name (starts with a digit)

Naming Variables – Recommendations

We will provide some recommendations how to name your variables, since not

all names, allowed by the compiler, are appropriate for the variables.

- The names should be descriptive and explain what the variable is used

for. For example, an appropriate name for a variable storing a person’s
name is personName and inappropriate name is a37.

- Only Latin characters should be used. Although Cyrillic is allowed by

the compiler, it is not a good practice to use it in variable names or in

the rest of the identifiers within the program.

- In C# it is generally accepted that variable names should start with a

small letter and include small letters, every new word, however, starts

with a capital letter. For instance, the name firstName is correct and

better to use than firstname or first_name. Usage of the character _

in the variable names is considered a bad naming style.

- Variable names should be neither too long nor too short – they just

need to clarify the purpose of the variable within its context.

- Uppercase and lowercase letters should be used carefully as C#

distinguishes them. For instance, age and Age are different variables.

Here are some examples of well-named variables:

- firstName

- age

- startIndex

- lastNegativeNumberIndex

And here are some examples for poorly named variables (although the names

are correct from the C# compiler’s perspective):
- _firstName (starts with _)

126 Fundamentals of Computer Programming with C#

- last_name (contains _)

- AGE (is written with capital letters)

- Start_Index (starts with capital letter and contains _)

- lastNegativeNumber_Index (contains _)

- a37 (the name is not descriptive and does not clearly provide the

purpose of the variable)

- fullName23, fullName24, etc. (it is not appropriate for a variable name

to contain digits unless this improves the clarity of the variable used; if

you need to have multiple variables with similar names ending in a

different number, storing the same or similar type of data, it may be

more appropriate to create a single collection or array variable and

name it fullNamesList, for example).

Variables should have names, which briefly explain their purpose. When a

variable is named with an inappropriate name, it makes the program very

difficult to read and modify later (after a while, when we have forgotten how

it works). For further explanation on the proper naming of variables refer to

chapter "High-Quality Programming Code".

Always try to use short and precise names when naming the

variables. Follow the rule that the variable name should state

what it is used for, e.g. the name should answer the question

"what value is stored in this variable". When this condition is

not fulfilled then try to find a better name. Digits are not

appropriate to be used in variable names.

Declaring Variables

When you declare a variable, you perform the following steps:

- specify its type (such as int);

- specify its name (identifier, such as age);

- optionally specify initial value (such as 25) but this is not obligatory.

The syntax for declaring variables in C# is as follows:

<data type> <identifier> [= <initialization>];

Here is an example of declaring variables:

string name;

int age;

Chapter 2. Primitive Types and Variables 127

Assigning a Value

Assigning a value to a variable is the act of providing a value that must be

stored in the variable. This operation is performed by the assignment operator

"=". On the left side of the operator we put the variable name and on the right

side – its new value.

Here is an example of assigning values to variables:

name = "John Smith";
age = 25;

Initialization of Variables

The word initialization in programming means specifying an initial value.

When setting value to variables at the time of their declaration we actually

initialize them.

Default Variable Values

Each data type in C# has a default value (default initialization) which is used

when there is no explicitly set value for a given variable. We can use the

following table to see the default values of the types, which we already got

familiar with:

Data Type Default Value Data Type Default Value

sbyte 0 float 0.0f

byte 0 double 0.0d

short 0 decimal 0.0m

ushort 0 bool false

int 0 char '\u0000'

uint 0u string null

long 0L object null

ulong 0u

Let’s summarize how to declare variables, initialize them and assign values to
them with the following example:

// Declare and initialize some variables
byte centuries = 20;

ushort years = 2000;
decimal decimalPI = 3.141592653589793238m;
bool isEmpty = true;

char ch = 'a';

128 Fundamentals of Computer Programming with C#

string firstName = "John";

ch = (char)5;

char secondChar;

// Here we use an already initialized variable and reassign it

secondChar = ch;

Value and Reference Types

Data types in C# are two types: value and reference.

Value types are stored in the program execution stack and directly contain

their value. Value types are the primitive numeric types, the character type

and the Boolean type: sbyte, byte, short, ushort, int, long, ulong,

float, double, decimal, char, bool. The memory allocated for them is

released when the program exits their range, i.e. when the block of code in

which they are defined completes its execution. For example, a variable

declared in the method Main() of the program is stored in the stack until the

program completes execution of this method, i.e. until it finishes (C#

programs terminate after fully executing the Main() method).

Reference types keep a reference (address), in the program execution

stack, and that reference points to the dynamic memory (heap), where

their value is stored. The reference is a pointer (address of the memory cell)

indicating the actual location of the value in the heap. An example of a value

at address in the stack for execution is 0x00AD4934. The reference has a

type. The reference can only point to objects of the same type, i.e. it is a

strongly typed pointer. All reference types can hold a null value. This is a

special service value, which means that there is no value.

Reference types allocate dynamic memory for their creation. They also

release some dynamic memory for a memory cleaning (garbage

collector), when it is no longer used by the program. It is unknown exactly

when a given reference variable will be released of the garbage collector as

this depends on the memory load and other factors. Since the allocation and

release of memory is a slow operation, it can be said that the reference types

are slower than the value ones.

As reference data types are allocated and released dynamically during

program execution, their size might not be known in advance. For example, a

variable of type string can contain text data which varies in length. Actually

the string text value is stored in the dynamic memory and can occupy a

different volume (count of bytes) while the string variable stores the address

of the text value.

Reference types are all classes, arrays and interfaces such as the types:

object, string, byte[]. We will learn about classes, objects, strings, arrays

and interfaces in the next chapters of this book. For now, it is enough to know

Chapter 2. Primitive Types and Variables 129

that all types, which are not value, are reference and their values are stored

in the heap (the dynamically allocated memory).

Value and Reference Types and the Memory

In this example we will illustrate how value and reference types are

represented in memory. Consider the execution of the following

programming code:

int i = 42;
char ch = 'A';
bool result = true;

object obj = 42;
string str = "Hello";
byte[] bytes = { 1, 2, 3 };

At this point the variables are located in the memory as follows:

If we now execute the following code, which changes the values of the

variables, we will see what happens to the memory when changing the

value and reference types:

String@7cdaf2

Int32@9ae764

HeapStack

42

i

ch

result

obj

42

str

Hello

(4 bytes)

A (2 bytes)

true (1 byte)

int

(4 bytes)

string

byte[]@190d11

bytes

1 byte[]2 3

130 Fundamentals of Computer Programming with C#

i = 0;
ch = 'B';
result = false;

obj = null;
str = "Bye";
bytes[1] = 0;

After these changes the variables and their values are located in the

memory as follows:

As you can see from the figure, a change in a value type (i = 0) changes its

value directly into the stack. When changing a reference type, things are

different: the value is changed in the heap (bytes[1] = 0). The variable

that keeps the array reference remains unchanged (0x00190D11). When

assigning a null value in a reference type, that reference is disconnected

from its value and the variable remains with no value (obj = null).

When assigning new value to an object (a reference type variable) the new

object is allocated in the heap (the dynamic memory) while the old object

remains free (unreferenced). The reference is redirected to the new object

(str = "Bye") while the old objects ("Hello") will be cleaned at some moment

String@9a787b

null

HeapStack

0

i

ch

result

obj

42

str

Hello

(4 bytes)

B (2 bytes)

false (1 byte)

int

(4 bytes)

string

byte[]@190d11

bytes

1 byte[]0 3

Bye string

Chapter 2. Primitive Types and Variables 131

by the garbage collector (the .NET Framework’s internal system for

automatic memory cleaning) as they are not in use anymore.

Literals

Primitive types, which we already met, are special data types built into the C#

language. Their values specified in the source code of the program are called

literals. One example will make this clearer:

bool result = true;
char capitalC = 'C';
byte b = 100;

short s = 20000;
int i = 300000;

In the above example, literals are true, 'C', 100, 20000 and 300000. They

are variable values set directly in the source code of the program.

Types of Literals

In C# language, there are several types of literals:

- Boolean

- Integer

- Real

- Character

- String

- Object literal null

Boolean Literals

Boolean literals are:

- true

- false

When we assign a value to a variable of type bool we can use only one of

these two values or a Boolean expression (which is calculated to true or

false).

Boolean Literals – Example

Here is an example of a declaration of a variable of type bool and assigning a

value, which represents the Boolean literal true:

bool result = true;

132 Fundamentals of Computer Programming with C#

Integer Literals

Integer literals are sequences of digits, a sign (+, -), suffixes and prefixes.

Using prefixes we can present integers in the program source in decimal or

hexadecimal format. More information about the different numeral systems

we can find in the chapter "Numeral Systems". In the integer literals the

following prefixes and suffixes may take part:

- "0x" and "0X" as prefix indicates hexadecimal values, for example

0xA8F1;

- 'l' and 'L' as suffix indicates long type data, for example 357L.

- 'u' and 'U' as suffix indicates uint or ulong data type, for example 112u.

By default (if no suffix is used) the integer literals are of type int.

Integer Literals – Examples

Here are some examples of using integer literals:

// The following variables are initialized with the same value
int numberInDec = 16;

int numberInHex = 0x10;

// This will cause an error, because the value 234L is not int

int longInt = 234L;

Real Literals

Real literals are a sequence of digits, a sign (+, -), suffixes and the decimal

point character. We use them for values of type float, double and decimal.

Real literals can be represented in exponential format. They also use the

following indications:

- 'f' and 'F' as suffixes mean data of type float;

- 'd' and 'D' as suffixes mean data of type double;

- 'm' and 'm' as suffixes mean data of type decimal;

- 'e' is an exponent, for example, "e-5" means the integer part multiplied

by 10-5.

By default (if there is no suffix), the real numbers are of type double.

Real Literals – Examples

Here are some examples of real literals' usage:

// The following is the correct way of assigning a value:
float realNumber = 12.5f;

Chapter 2. Primitive Types and Variables 133

// This is the same value in exponential format:
realNumber = 1.25e+1f;

// The following causes an error, because 12.5 is double
float realNumber = 12.5;

Character Literals

Character literals are single characters enclosed in apostrophes (single

quotes). We use them to set the values of type char. The value of a character

literal can be:

- a character, for example 'A';

- a character code, for example '\u0065';

- an escaping sequence;

Escaping Sequences

Sometimes it is necessary to work with characters that are not displayed on

the keyboard or with characters that have special meanings, such as the “new

line” character. They cannot be represented directly in the source code of

the program and in order to use them we need special techniques, which we

will discuss now.

Escaping sequences are literals. They are a sequence of special characters,

which describe a character that cannot be written directly in the source code.

This is, for instance, the “new line” character.

There are many examples of characters that cannot be represented directly in

the source code: a double quotation mark, tab, new line, backslash and

others. Here are some of the most frequently used escaping sequences:

- \' – single quote

- \" – double quotes

- \\ – backslash

- \n – new line

- \t – offset (tab)

- \uXXXX – char specified by its Unicode number, for example \u03A7.

The character \ (backslash) is also called an escaping character because it

allows the display on screen (or other output device) of characters that have

special meaning or effect and cannot be represented directly in the source

code.

134 Fundamentals of Computer Programming with C#

Escaping Sequences – Examples

Here are some examples of character literals:

// An ordinary character

char character = 'a';
Console.WriteLine(character);

// Unicode character code in a hexadecimal format
character = '\u003A';
Console.WriteLine(character);

// Assigning the single quotiation character (escaped as \')
character = '\'';

Console.WriteLine(character);

// Assigning the backslash character (escaped as \\)

character = '\\';
Console.WriteLine(character);

// Console output:
// a
// :

// '
// \

String Literals

String literals are used for data of type string. They are a sequence of

characters enclosed in double quotation marks.

All the escaping rules for the char type discussed above are also valid for

string literals.

Strings can be preceded by the @ character that specifies a quoted string

(verbatim string). In quoted strings the rules for escaping are not valid, i.e.

the character \ means \ and is not an escaping character. Only one character

needs to be escaped in the quoted strings – the character " (double-quotes)

and it is escaped in the following way – by repeating it "" (double double-

quotes). All other characters are treated literally, even the new line. Quoted

strings are often used for the file system paths naming.

String Literals – Examples

Here are few examples for string literals usage:

string quotation = "\"Hello, Jude\", he said.";

Chapter 2. Primitive Types and Variables 135

Console.WriteLine(quotation);
string path = "C:\\Windows\\Notepad.exe";
Console.WriteLine(path);

string verbatim = @"The \ is not escaped as \\.
I am at a new line.";
Console.WriteLine(verbatim);

// Console output:
// "Hello, Jude", he said.
// C:\Windows\Notepad.exe

// The \ is not escaped as \\.
// I am at a new line.

More about strings we will find in the chapter "Strings and Text Processing".

Exercises

1. Declare several variables by selecting for each one of them the most

appropriate of the types sbyte, byte, short, ushort, int, uint, long

and ulong in order to assign them the following values: 52,130; -115;

4825932; 97; -10000; 20000; 224; 970,700,000; 112; -44; -1,000,000;

1990; 123456789123456789.

2. Which of the following values can be assigned to variables of type float,

double and decimal: 5, -5.01, 34.567839023; 12.345; 8923.1234857;

3456.091124875956542151256683467?

3. Write a program, which compares correctly two real numbers with

accuracy at least 0.000001.

4. Initialize a variable of type int with a value of 256 in

hexadecimal format (256 is 100 in a numeral system with base 16).

5. Declare a variable of type char and assign it as a value the character,

which has Unicode code, 72 (use the Windows calculator in order to find

hexadecimal representation of 72).

6. Declare a variable isMale of type bool and assign a value to it depending

on your gender.

7. Declare two variables of type string with values "Hello" and "World".

Declare a variable of type object. Assign the value obtained of

concatenation of the two string variables (add space if necessary) to this

variable. Print the variable of type object.

8. Declare two variables of type string and give them values "Hello" and

"World". Assign the value obtained by the concatenation of the two

variables of type string (do not miss the space in the middle) to a

variable of type object. Declare a third variable of type string and

initialize it with the value of the variable of type object (you should use

type casting).

136 Fundamentals of Computer Programming with C#

9. Declare two variables of type string and assign them a value “The

"use" of quotations causes difficulties.” (without the outer quotes).

In one of the variables use quoted string and in the other do not use it.

10. Write a program to print a figure in the shape of a heart by the sign "o".

11. Write a program that prints on the console isosceles triangle which

sides consist of the copyright character "©".

12. A company dealing with marketing wants to keep a data record of its

employees. Each record should have the following characteristic – first

name, last name, age, gender (‘m’ or ‘f’) and unique employee number
(27560000 to 27569999). Declare appropriate variables needed to

maintain the information for an employee by using the appropriate data

types and attribute names.

13. Declare two variables of type int. Assign to them values 5 and 10

respectively. Exchange (swap) their values and print them.

Solutions and Guidelines

1. Look at the ranges of the numerical types in C# described in this chapter.

2. Consider the number of digits after the decimal point. Refer to the table

that describes the sizes of the types float, double and decimal.

3. Two floating-point variables are considered equal if their difference is less

than some predefined precision (e.g. 0.000001):

bool equal = Math.Abs(a - b) < 0.000001;

4. Look at the section about Integer Literals. To easily convert numbers to a

different numeral system use the built-in Windows calculator. For a

hexadecimal representation of the literal use prefix 0x.

5. Look at the section about Character Literals.

6. Look at the section about Boolean Literals.

7. Look at the sections about Strings and Object Data Type.

8. Look at the sections about Strings and Object Data Type. To cast from

object to string use typecasting:

string str = (string)obj;

9. Look at the section about Character Literals. It is necessary to use the

escaping character \" or verbatim strings.

10. Use Console.WriteLine … , the character 'o' and spaces.

11. Use Console.WriteLine … , the character © and spaces. Use Windows

Character Map in order to find the Unicode code of the sign "©".

Note that the console may display "c" instead of "©" if it does not

Chapter 2. Primitive Types and Variables 137

support Unicode. If this happens, you might be unable to do anything to

fix it. Some versions of Windows just do not support Unicode in the

console even when you explicitly set the character encoding to UTF-8:

Console.OutputEncoding = System.Text.Encoding.UTF8;

You may need to change the font of your console to some font that

supports the “©” symbol, e.g. “Consolas” or “Lucida Console”.

12. For the names use type string, for the gender use type char (only one

char m/f), and for the unique number and age use some integer type.

13. Use third temporary variable for exchanging the variables:

int a = 5;
int b = 10;

int oldA = a;
a = b;
b = oldA;

To swap integer variables other solutions exist which do not use a third

variable. For example, if we have two integer variables a and b:

int a = 5;
int b = 10;

a = a + b;
b = a - b;

a = a - b;

You might also use the XOR swap algorithm for exchanging integer

values: http://en.wikipedia.org/wiki/XOR_swap_algorithm.

http://en.wikipedia.org/wiki/XOR_swap_algorithm

